`
xinklabi
  • 浏览: 1561947 次
  • 性别: Icon_minigender_1
  • 来自: 吉林
文章分类
社区版块
存档分类
最新评论

深入JVM锁机制2-Lock-并发同步

 
阅读更多

前文(深入JVM锁机制-synchronized)分析了JVM中的synchronized实现,本文继续分析JVM中的另一种锁Lock的实现。与synchronized不同的是,Lock完全用Java写成,在java这个层面是无关JVM实现的。

在java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以ReentrantLock作为讲解切入点。

1. ReentrantLock的调用过程

经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:

[java] view plaincopy
 
  1. static abstract class Sync extends AbstractQueuedSynchronizer  

Sync又有两个子类:

[java] view plaincopy
 
  1. final static class NonfairSync extends Sync  
[java] view plaincopy
 
  1. final static class FairSync extends Sync  

显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。

先理一下Reentrant.lock()方法的调用过程(默认非公平锁):

这些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理后面的流程。

2. 锁实现(加锁)

简单说来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。

该队列如图:

与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。

当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。

如果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节难以完全领会其精髓,下面详细说明实现过程:

2.1 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

[java] view plaincopy
 
  1. final boolean nonfairTryAcquire(int acquires) {  
  2.     final Thread current = Thread.currentThread();  
  3.     int c = getState();  
  4.     if (c == 0) {  
  5.         if (compareAndSetState(0, acquires)) {  
  6.             setExclusiveOwnerThread(current);  
  7.             return true;  
  8.         }  
  9.     }  
  10.     else if (current == getExclusiveOwnerThread()) {  
  11.         int nextc = c + acquires;  
  12.         if (nextc < 0// overflow  
  13.             throw new Error("Maximum lock count exceeded");  
  14.         setState(nextc);  
  15.         return true;  
  16.     }  
  17.     return false;  
  18. }  

该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。

如果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会-1,但为0时释放锁。如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很显然这个Running线程并未进入等待队列。

如果c !=0 但发现自己已经拥有锁,只是简单地++acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。

2.2 AbstractQueuedSynchronizer.addWaiter

 

 

 

 

addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:

[java] view plaincopy
 
  1. private Node addWaiter(Node mode) {  
  2.     Node node = new Node(Thread.currentThread(), mode);  
  3.     // Try the fast path of enq; backup to full enq on failure  
  4.     Node pred = tail;  
  5.     if (pred != null) {  
  6.         node.prev = pred;  
  7.         if (compareAndSetTail(pred, node)) {  
  8.             pred.next = node;  
  9.             return node;  
  10.         }  
  11.     }  
  12.     enq(node);  
  13.     return node;  
  14. }  

其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步:

  1. 如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail
  2. 如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail

下面是enq方法:

[java] view plaincopy
 
  1. private Node enq(final Node node) {  
  2.     for (;;) {  
  3.         Node t = tail;  
  4.         if (t == null) { // Must initialize  
  5.             Node h = new Node(); // Dummy header  
  6.             h.next = node;  
  7.             node.prev = h;  
  8.             if (compareAndSetHead(h)) {  
  9.                 tail = node;  
  10.                 return h;  
  11.             }  
  12.         }  
  13.         else {  
  14.             node.prev = t;  
  15.             if (compareAndSetTail(t, node)) {  
  16.                 t.next = node;  
  17.                 return t;  
  18.             }  
  19.         }  
  20.     }  
  21. }  


该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前现在追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:

  • SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要重新这个后继线程(unpark)
  • CANCELLED(1):因为超时或中断,该线程已经被取消
  • CONDITION(-2):表明该线程被处于条件队列,就是因为调用了Condition.await而被阻塞
  • PROPAGATE(-3):传播共享锁
  • 0:0代表无状态

2.3 AbstractQueuedSynchronizer.acquireQueued

acquireQueued的主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回

[java] view plaincopy
 
  1. final boolean acquireQueued(final Node node, int arg) {  
  2.     try {  
  3.         boolean interrupted = false;  
  4.         for (;;) {  
  5.             final Node p = node.predecessor();  
  6.             if (p == head && tryAcquire(arg)) {  
  7.                 setHead(node);  
  8.                 p.next = null// help GC  
  9.                 return interrupted;  
  10.             }  
  11.             if (shouldParkAfterFailedAcquire(p, node) &&  
  12.                 parkAndCheckInterrupt())  
  13.                 interrupted = true;  
  14.         }  
  15.     } catch (RuntimeException ex) {  
  16.         cancelAcquire(node);  
  17.         throw ex;  
  18.     }  
  19. }  


仔细看看这个方法是个无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,当然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把当前线程挂起,从而阻塞住线程的调用栈。

[java] view plaincopy
 
  1. private final boolean parkAndCheckInterrupt() {  
  2.     LockSupport.park(this);  
  3.     return Thread.interrupted();  
  4. }  

如前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。当然也不是马上把请求不到锁的线程进行阻塞,还要检查该线程的状态,比如如果该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:

[java] view plaincopy
 
  1.   private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {  
  2.       int ws = pred.waitStatus;  
  3.       if (ws == Node.SIGNAL)  
  4.           /* 
  5.            * This node has already set status asking a release 
  6.            * to signal it, so it can safely park 
  7.            */  
  8.           return true;  
  9.       if (ws > 0) {  
  10.           /* 
  11.            * Predecessor was cancelled. Skip over predecessors and 
  12.            * indicate retry. 
  13.            */  
  14.    do {  
  15. node.prev = pred = pred.prev;  
  16.    } while (pred.waitStatus > 0);  
  17.    pred.next = node;  
  18.       } else {  
  19.           /* 
  20.            * waitStatus must be 0 or PROPAGATE. Indicate that we 
  21.            * need a signal, but don't park yet. Caller will need to 
  22.            * retry to make sure it cannot acquire before parking.  
  23.            */  
  24.           compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  
  25.       }   
  26.       return false;  
  27.   }  

检查原则在于:

  • 规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞
  • 规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞
  • 规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同

总体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,如果前继节点处于CANCELLED状态,则顺便删除这些节点重新构造队列。

至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。

3. 解锁

请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行以后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程得到解锁,则执行第13行,即设置interrupted = true,之后又进入无限循环。

从无限循环的代码可以看出,并不是得到解锁的线程一定能获得锁,必须在第6行中调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。通过之后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head,因此p == head的判断基本都会成功。

至此可以看到,把tryAcquire方法延迟到子类中实现的做法非常精妙并具有极强的可扩展性,令人叹为观止!当然精妙的不是这个Templae设计模式,而是Doug Lea对锁结构的精心布局。

解锁代码相对简单,主要体现在AbstractQueuedSynchronizer.release和Sync.tryRelease方法中:

class AbstractQueuedSynchronizer

[java] view plaincopy
 
  1. public final boolean release(int arg) {  
  2.     if (tryRelease(arg)) {  
  3.         Node h = head;  
  4.         if (h != null && h.waitStatus != 0)  
  5.             unparkSuccessor(h);  
  6.         return true;  
  7.     }  
  8.     return false;  
  9. }  

class Sync

[java] view plaincopy
 
  1. protected final boolean tryRelease(int releases) {  
  2.     int c = getState() - releases;  
  3.     if (Thread.currentThread() != getExclusiveOwnerThread())  
  4.         throw new IllegalMonitorStateException();  
  5.     boolean free = false;  
  6.     if (c == 0) {  
  7.         free = true;  
  8.         setExclusiveOwnerThread(null);  
  9.     }  
  10.     setState(c);  
  11.     return free;  
  12. }  


tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。tryRelease语义很明确:如果线程多次锁定,则进行多次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,因为无竞争所以没有使用CAS。

release的语义在于:如果可以释放锁,则唤醒队列第一个线程(Head),具体唤醒代码如下:

[java] view plaincopy
 
  1. private void unparkSuccessor(Node node) {  
  2.     /* 
  3.      * If status is negative (i.e., possibly needing signal) try 
  4.      * to clear in anticipation of signalling. It is OK if this 
  5.      * fails or if status is changed by waiting thread. 
  6.      */  
  7.     int ws = node.waitStatus;  
  8.     if (ws < 0)  
  9.         compareAndSetWaitStatus(node, ws, 0);   
  10.   
  11.     /* 
  12.      * Thread to unpark is held in successor, which is normally 
  13.      * just the next node.  But if cancelled or apparently null, 
  14.      * traverse backwards from tail to find the actual 
  15.      * non-cancelled successor. 
  16.      */  
  17.     Node s = node.next;  
  18.     if (s == null || s.waitStatus > 0) {  
  19.         s = null;  
  20.         for (Node t = tail; t != null && t != node; t = t.prev)  
  21.             if (t.waitStatus <= 0)  
  22.                 s = t;  
  23.     }  
  24.     if (s != null)  
  25.         LockSupport.unpark(s.thread);  
  26. }  


这段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会导致性能降低,其实这个发生的几率很小,所以不会有性能影响。之后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock完成。之后,被解锁的线程进入上面所说的重新竞争状态。

4. Lock VS Synchronized

AbstractQueuedSynchronizer通过构造一个基于阻塞的CLH队列容纳所有的阻塞线程,而对该队列的操作均通过Lock-Free(CAS)操作,但对已经获得锁的线程而言,ReentrantLock实现了偏向锁的功能。

synchronized的底层也是一个基于CAS操作的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了降低线程的出列速度;当然也实现了偏向锁,从数据结构来说二者设计没有本质区别。但synchronized还实现了自旋锁,并针对不同的系统和硬件体系进行了优化,而Lock则完全依靠系统阻塞挂起等待线程。

当然Lock比synchronized更适合在应用层扩展,可以继承AbstractQueuedSynchronizer定义各种实现,比如实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对应的Condition也比wait/notify要方便的多、灵活的多。

分享到:
评论

相关推荐

    Java-并发(Concurrent)编程

    资源概要:1,多线程;2,synchronized;3,volatile;4,多线程在JVM中的实现原理剖析 导语: ...锁Lock-AQS核心原理剖析 并发工具类、并发容器、阻塞队列 线程池原理剖析 线程池案例-Web容器-压力测试

    汪文君高并发编程实战视频资源下载.txt

    │ 高并发编程第一阶段30讲、如何实现一个自己的显式锁Lock精讲下(让锁具备超时功能).mp4 │ 高并发编程第一阶段31讲、如何给你的应用程序注入钩子程序,Linux下演示.mp4 │ 高并发编程第一阶段32讲、如何捕获...

    lock4j高性能分布式锁.rar

    分布式锁概念当我们在单机环境下进行应用开发,涉及到并发同步时,说到如何保证线程的安全,相信大家一定能想到采用synchronized或者Lock的方式,来解决多线程间的代码同步问题。这时多线程的运行都是在同一个JVM之...

    Lock接口与synchronized关键字

    Lock接口与synchronized关键字在Java并发编程中都是用于实现同步机制的重要工具,但它们在使用方式、功能特性以及灵活性等方面存在一些显著的差异。 首先,从使用方式上来看,synchronized是Java语言内置的关键字,...

    Java 并发编程原理与实战视频

    第2节理解多线程与并发的之间的联系与区别 [免费观看] 00:11:59分钟 | 第3节解析多线程与多进程的联系以及上下文切换所导致资源浪费问题 [免费观看] 00:13:03分钟 | 第4节学习并发的四个阶段并推荐学习并发的资料 ...

    汪文君高并发编程实战视频资源全集

    │ 高并发编程第一阶段30讲、如何实现一个自己的显式锁Lock精讲下(让锁具备超时功能).mp4 │ 高并发编程第一阶段31讲、如何给你的应用程序注入钩子程序,Linux下演示.mp4 │ 高并发编程第一阶段32讲、如何捕获...

    Java并发编程原理与实战

    同步容器与并发容器.mp4 并发容器CopyOnWriteArrayList原理与使用.mp4 并发容器ConcurrentLinkedQueue原理与使用.mp4 Java中的阻塞队列原理与使用.mp4 实战:简单实现消息队列.mp4 并发容器ConcurrentHashMap原理与...

    Java多线程和并发知识整理

    3.3 JVM中锁的优化 3.4 Synchronized与Lock 3.5 扩展 四、volatile 详解 4.1 作用 4.2 实现原理 4.3 应用场景 五、final 详解 5.1 基础 5.2 重排序规则 5.3 扩展 六、JUC 6.1 汇总 6.2 Lock框架和Tools类...

    Java并发编程实战

    如何提高单线程子系统的响应性,如何确保并发程序执行预期任务,如何提高并发代码的性能和可伸缩性等内容,最后介绍了一些高级主题,如显式锁、原子变量、非阻塞算法以及如何开发自定义的同步工具类。 本书适合Java...

    龙果java并发编程完整视频

    第2节理解多线程与并发的之间的联系与区别 [免费观看] 00:11:59分钟 | 第3节解析多线程与多进程的联系以及上下文切换所导致资源浪费问题 [免费观看] 00:13:03分钟 | 第4节学习并发的四个阶段并推荐学习并发的资料 ...

    java并发编程

    第2节理解多线程与并发的之间的联系与区别 [免费观看] 00:11:59分钟 | 第3节解析多线程与多进程的联系以及上下文切换所导致资源浪费问题 [免费观看] 00:13:03分钟 | 第4节学习并发的四个阶段并推荐学习并发的资料 ...

    龙果 java并发编程原理实战

    第2节理解多线程与并发的之间的联系与区别 [免费观看] 00:11:59分钟 | 第3节解析多线程与多进程的联系以及上下文切换所导致资源浪费问题 [免费观看] 00:13:03分钟 | 第4节学习并发的四个阶段并推荐学习并发的资料 ...

    java关键字Synchronized详解

    ava中的关键字synchronized是一种用于实现线程同步的机制。它可以确保在同一时刻,只有一个线程能够访问被synchronized修饰的代码块或方法。这种机制可以有效地避免多线程环境下的数据竞争和不一致问题。 在Java中...

    Java高级工程师简历模板18k+

    2.熟练使用常用的java集合类以及常用集合的源码,熟悉多线程以及同步容器以及并发容器的使用,AQS,CAS,lock,volatilte,synchronized等; 3.对Java虚拟机、JMM、垃圾收集机制、GC算法、JVM常用配置参数、GC参数、...

    zookeeper实现分布式锁

    在java中对于同一个jvm而言,jdk已经提供了lock和同步等。但是在分布式情况下,往往存在多个进程对一些资源产生竞争关系,而这些进程往往在不同的机器上,这个时候jdk中提供的已经不能满足。分布式锁顾明思议就是...

    java核心面试

    (1) 获取对象监视器的锁(lock) (2) 清空工作内存数据, 从主存复制对象成员变量到当前工作内存, 即同步数据 (read and load) (3) 执行代码,改变共享变量值 (use and assign) (4) 将工作内存数据刷回主存 (store ...

    java核心面试技术点

    (1) 获取对象监视器的锁(lock) (2) 清空工作内存数据, 从主存复制对象成员变量到当前工作内存, 即同步数据 (read and load) (3) 执行代码,改变共享变量值 (use and assign) (4) 将工作内存数据刷回主存 (store ...

    Java高并发系列之Java内存模型, 八种基本操作以及安全同步规则

    JVM内存模型 java内存模型逻辑抽象图 java 内存模型 lock(锁定):作用于主内存的变量,把一个变量标记为一条线程独占状态 unlock(解锁):作用于主内存的变量,把一个处于锁定状态的变量释放出来,释放后的变量才...

Global site tag (gtag.js) - Google Analytics